Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(10): e0292607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37816027

RESUMEN

Understanding host-parasitoid food webs, as well as the factors affecting species interactions, is important for developing pest management strategies in an agroecosystem. This research aimed to study how the long-term change in oil palm plantations, specifically the tree age, affect the structure of host-parasitoid food webs. The field research was conducted on an oil palm plantation located in Central Kalimantan and Jambi Province, Indonesia. In Central Kalimantan, we conducted observations of lepidopteran larvae and parasitoid wasps at different tree ages, ranging from 3 to 18 years old. For tree ages from 3 to 10 years, observations of host-parasitoid food webs were conducted by collecting the lepidopteran larvae using a hand-collection method in each oil palm tree within a hundred trees and they were later reared in the laboratory for observing the emerging parasitoids. The fogging method was applied for trees aged 12 to 18 years because the tree height was too high, and hand-collection was difficult to perform. To compare host-parasitoid food webs between different regions, we also conducted a hand-collection method in Jambi, but only for trees aged 3 years old. The food-web structure that was analyzed included the species number of lepidopteran larvae and parasitoid wasps, linkage density, and interaction diversity. We found 32 species of lepidopteran pests and 16 species of associated parasitoids in Central Kalimantan and 12 species of lepidopteran pests, and 11 species of parasitoids in Jambi. Based on the GLM analysis, tree age had a negative relationship with the species number of lepidopteran larvae and parasitoids as well as linkage density and interaction diversity. Different geographical regions showed different host-parasitoid food web structures, especially the species number of lepidopteran larvae and interaction diversity, which were higher in Central Kalimantan than in Jambi. However, some parasitoids can be found across different tree ages. For example, Fornicia sp (Hymenoptera: Braconidae) was recorded in all ages of oil palm sampled. Results of the GLM analysis showed that the abundance of Fornicia sp and its host (lepidopteran larvae abundance) were not affected by the tree age of the oil palm. In conclusion, the long-term change in oil palm plantations simplifies the structure of host-parasitoid food webs. This highlights the importance of long-term studies across geographical regions for a better understanding of the consequences that wide monoculture oil palm plantations have on biological control services.


Asunto(s)
Cadena Alimentaria , Avispas , Animales , Larva , Árboles , Interacciones Huésped-Parásitos
2.
PeerJ ; 7: e7464, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31410312

RESUMEN

Insects visit flowers not only to forage for nectar or pollen but also to search for hosts or prey, and to look for suitable habitats for breeding sites. In oil palm flowers, it has been documented that not all flower-visiting insects are pollinators, but some insects are recognized as predators, parasitoids or saprophages, which may affect the abundance and persistence of the weevil pollinating oil palm, Elaeidobius kamerunicus. We studied the community of oil palm flower-visiting insects and investigated the covariation between the abundance E. kamerunicus and that of other dominant species. Ecological research was conducted in oil palm plantations with different tree ages in Central Borneo. Our results found that tree age and flower type of oil palm did not influence the abundance and species richness of flower-visiting insects, but significantly affected their species composition. There was a significant positive relationship between the abundance of E. kamerunicus and the fly Scaptodrosophila sp, indicating that these species covariate in oil palm flowers. These findings suggest that understanding the covariation between E. kamerunicus and Scaptodrosophila sp may help develop the conservation strategies for E. kamerunicus to support the sustainable production of oil palm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...